Search results for "decay [resonance]"
showing 10 items of 195 documents
Decay properties of 114Ag
1971
Applications of the total absorption technique to improve reactor decay heat calculations: study of the beta decay of [sup 102,104,105]Tc
2009
The decay heat of the fission products plays an important role in predicting the heat‐up of nuclear fuel after reactor shutdown. This form of energy release is calculated as the sum of the energy‐weighted activities of all fission products P(t) = ΣEiλiNi(t), where Ei is the decay energy of nuclide i (gamma and beta component), λi is the decay constant of nuclide i and Ni(t) is the number of nuclide i at cooling time t. Even though the reproduction of the measured decay heat has improved in recent years, there is still a long standing discrepancy at t∼1000 s cooling time for some fuels. A possible explanation for this disagreement can been found in the work of Yoshida et al. [1], who demonst…
β-decay data requirements for reactor decay heat calculations: study of the possible source of the gamma-ray discrepancy in reactor heat summation ca…
2007
The decay heat of fission products plays an important role in predictions of the heat up of nuclear fuel in reactors. The released energy is calculated as the summation of the activities of allfission products P(t) = Ei λi Ni(t), where Ei is the decay energy of nuclide i (gamma and beta component), λi is the decay constant of nuclide i and Ni(t) is the number of nuclide i at cooling time t. Even though the reproduction of the measured decay heat has improved in recent years, there is still a long standing discrepancy in the t ∼ 1000s cooling time for some fuels. A possible explanation to this improper description has been found in the work of Yoshida et al. (1), where it has been shown that…
Direct mass measurements above uranium bridge the gap to the island of stability
2010
The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended d…
Study of excited states of [sup 31]S through beta-decay of [sup 31]Cl for nucleosynthesis in ONe novae
2011
We have produced an intense and pure beam of 31Cl with the MARS Separator at the Texas A&M University and studied β‐decay of 31Cl by implanting the beam into a novel detector setup, capable of measuring β‐delayed protons and γ‐rays simultaneously. From our data, we have established decay scheme of 31Cl, found resonance energies with 1 keV precision, have measured its half‐life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.
Ca48+Bk249Fusion Reaction Leading to ElementZ=117: Long-Livedα-DecayingDb270and Discovery ofLr266
2014
The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294-117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-liv…
Comment on ‘Analysis of decay chains of superheavy nuclei produced in the 249Bk + 48Ca and 243Am + 48Ca reactions’
2018
Zlokazov and Utyonkov (2017 J. Phys. G: Nucl. Part. Phys. 44 075107) question the validity of the methods and conclusions presented by Forsberg et al (2016 Nucl. Phys. A 953 117). In this comment, we argue that the criticism is invalid.
Investigation of the ββ decay of 116Cd into excited states of 116Sn
1994
Abstract The double-beta decay of 116Cd into excited states of 116Sn is experimentally and theoretically investigated. From an inclusive experiment, using an external source of isotopically enriched Cd, new most stringent limits for the allowed and non-standard-model decays into excited states are derived. It is further investigated whether the bremsstrahlung emitted by the ββ electrons can be used to derive information on the ground-state decay. For the two-neutrino-decay mode a calculation, using the quasiparticle random-phase approximation, shows that the disadvantage in phase space, in comparison to the ground-state decay, is partially compensated through the nuclear-matrix element. Exp…
In-beam and decay spectroscopy of transfermium nuclei
2008
Abstract In recent years the body of experimental data on nuclei with masses A ≃ 250 has increased dramatically. Nuclei that had been out of reach for experimental studies have now become available for study through a variety of approaches, both with in-beam spectroscopic methods and through spectroscopy following the decay of isomeric states or alpha decays at the focal plane of powerful separators. This article aims to collect the currently available experimental data on nuclei between Cm ( Z = 96 ) and Db ( Z = 105 ) . The review of this data builds on the evaluations in the literature and focusses on those datasets obtained most recently.
β-decay ofO13
2005
The beta decay of O-13 has been studied at the IGISOL facility of the Jyvaskyla accelerator centre (Finland). By developing a low-energy isotope-separated beam of O-13 and using a modern segmented charged-particle detector array an improved measurement of the delayed proton spectrum was possible. Protons with energy up to more than 12 MeV are measured and the corresponding log(ft) values extracted. A revised decay scheme is constructed. The connection to molecular states and the shell model is discussed.